Cosmic-ray physics (II)

- What have been and will be discovered by cosmic rays? -

Hiroyuki Sagawa (ICRR, Univ. of Tokyo) Telescope Array Collaboration

> April 4, 2015 @BINP

Outline

- Multi-messenger observation
- Telescope Array (TA)
 - Physics motivation/TA detector
- Recent preliminary TA results
 - Energy spectrum
 - Anisotropy of arrival directions: hotspot
 - Composition
- TA Extension proposal
 - TAx4, TALE
- Others
- Summary

Cosmic Rays

- High-energy elementary particles that travel the universe
- Main component is proton. Others are nuclei and electrons
- They arrive at the earth uniformly (~0.1% level anisotropy)
- 1912 Victor Hess officially discovered cosmic rays

Hess who boarded a heat-air balloon

- 1930s~1940s Elementary particles were discovered using cosmic rays
 - Positrons, muons, pions ...
- 1938 Pierre Auger discovered extensive air showers
- 1950s~
 - The mission of the discovery of elementary particles moved to particle accelerator experiments
 - The mission of cosmic rays moved to the subjects such as observations of the universe
- 1962 J.D. Linsley observed a first highest-energy (10²⁰ eV) cosmic rays
- Since 2008, Telescope Array experiment has been taking data of 10²⁰ eV. ³

the Milky way (the Galaxy)

• Galaxy that includes our solar system

Balance of cosmic-ray energy

- The structure of our glaxy
 - Total energy of cosmic rays in the galactic disk $Ecr = \rho cr x$ $V \approx 10^{54^{\sim}55} \ erg$
 - Volume V = $10^{66^{-67}}$ cm³
 - Radius of about 10 kpc
 - Thickness of about a few hundred pc
 - Galactic magnetic field of about 1 μ G
 - Leakage of cosmic-ray energy from the galaxy $Ecr/\tau = \rho cr x V/\tau \approx 10^{40} erg/s$
 - Time during which cosmic rays are confined: $\tau \approx 10^7 \, {\rm yr}$ $10^{14^{-15}} \, {\rm s}$

Balance of cosmic-ray energy

- The rate of energy generation by supernova $\rm R_{E} \sim 10^{42}~erg/s$
 - Release of energy by a supernova explosion Esn 10⁵¹ erg
 - The number of supernova explosions in the galaxies 1/(30 yr)
- Supply of energy to cosmic rays by supernova explosion E ~ 10^{40} erg/s \approx Ecr/ τ
 - Assuming that 1% of energy is used for particle acceleration

Balance of energy between supply and loss of cosmic rays in the galaxy Intensity of cosmic rays in the galactic disk is constant

Acceleration of cosmic rays shock-wave acceleration

Supernova explosion Shock wave Cosmic ray acceleration

- Energy spectrum of cosmic rays at the source
 - $N(E) \propto E^{-2}$
 - Observed cosmic-ray spectrum may be explained
- Maximum energy for proton
 - $E_{max} \sim 10^{14} \text{eV}$

can be possible

- Early stage of neutron stars
 - $E_{max} \sim 10^{16} eV$

can be expected

Multi-messenger observation

- High-energy electromagnetic waves
- Particles
- Gravitational waves

Observation of cosmic rays

Detection below 10¹⁴ eV

- Direct detection by Satellite / balloon
 - limit of weight of detector
 - Low-energy CRs do not reach the ground because of geomagnetic field and atmosphere.

Electromagnetic waves

Electromagnetic waves X rays

- Items that were found by X-ray astronomy
 - Many objects in the universe emit X rays
 - Objects for which X-ray intensities vary irregularly within very short time
 - Existence of gases of ultra-high temperature
 - Ultra-high energy phenomena to accelerate electrons close to light velocity
- Relation to black holes, clusters of galaxies, objects with huge explosion

Electromagnetic waves γ rays

- X ray
 - Radiation from hightemperature plasma
- Gamma ray
 - Mainly radiation related to charged particles accelerated to relativistic energy
 - Subjects
 - Supernova explosion
 - e+e- annihilation from galactic center
 - Cosmic-ray acceleration in supernova explosion
 - Black hole using γ ray
 - Gamma-ray burst

H. Sagawa @BINP

Electromagnetic waves γ rays

- Methods of measurement
 - Hard X ray and gamma ray
 - Detectors with satellite
 - TeV gamma ray
 - Atmospheric Cherenkov telescope
 - Air shower detector

(ex) MAGIC Cherenkov telescope

(ex) Tibet Air Shower

(ex) Fermi space craft

Cosmic Ray

- 1900-1926 the twilight
 - 1896 radiation from Uranium by A.H.Becquerel
 - 1896 X ray by W.C.Rontgen
 - 1898 radiation from Thorium, Polonium, Radium etc. by M.Curie and G.Schmidt
 - 1900~ alpha ray, beta ray, gamma ray
 - 1908 alpha ray = Helium nucleus –
 2 electrons
 - 1911-1912 discovery of cosmic rays by V.Hess

Cosmic ray

- 1926-1933 establishing the concept of cosmic rays
 - Particle ray or gamma ray?
 - The intensity depends on latitude \rightarrow particle ray
 - (geomagnetic field strength depends on latitude)
 - Charge of cosmic ray?
 - East-west effect
 - More come from west

Cosmic ray

- 1933- era of discovery of elementary particles
 - 1932 discovery of positron with cloud chamber by C.D.Anderson
 - 1936 discovery of muon by C.D.Anderson and S.H.Neddermeyer
 - 1947 discovery of pion by C.F.Powell
 - 1947 discovery of V particle (K meson) by G.D.Rochester and C.C.Butler

Cosmic ray

- 1941- era of studies of the universe
 - 1948 study of cosmic-ray composition with balloon by P.Freier et al.
 - Study of energy spectrum
 - 1955~ existence of magnetic field of the universe was known
 - Study of sources of cosmic rays
 - Cosmic rays of higher energy
 - Neutral particles

neutrino

Leptons and quarks

- Electrons belong to lepton category
- Leptons are the group of elementary particles that do not undergo strong interaction
- Quarks and leptons

		1 st generation	2 nd generation	3 rd generation
	quark	u, d	s, c	b, t
lepton	electron-type	e (1897)	μ (1937)	τ (1975)
	neutrino-type	ν _e (1956)	ν _μ (1962)	ν _τ (2000)

neutrino

- Solar neutrino (to study nuclear fusion, oscillation) ~MeV
 - Homestake (C₂Cl₄), SAGE, GNO (gallium)
 - Kamiokande, SuperKamiokande, SNO (Water Cherenkov)
- Neutrino from supernova 10~20 MeV
 - Baksan, LSD, KamLAND (Liq. Scintillator)
 - Kamiokande, SuperKamiokande, SNO etc. (Water Cherenkov)
- Atmospheric neutrino
 - Study of neutrino oscillation
- High-energy neutrino from the universe E > 10¹⁵ eV
 - IceCube at the Antarctic
 - ANTARES in the deep sea

Gravitational wave detection

- Expected from the general theory of relativity
- Direct measurement of gravitational wave
 - Binary stars of high density
 - Explosion of supernova
- Detector type
 - Resonance-type
 - Laser interferometer-type

Next-generation gravitational wave detectors

Cosmic Rays

- High-energy elementary particles that travel the universe
- Main component is proton. Others are nuclei and electrons
- They arrive at the earth uniformly (~0.1% level anisotropy)
- 1912 Victor Hess officially discovered cosmic rays

Hess who boarded a heat-air balloon

- 1930s~1940s Elementary particles were discovered using cosmic rays
 - Positrons, muons, pions ...
- 1938 Pierre Auger discovered extensive air showers
- 1950s~
 - The mission of the discovery of elementary particles moved to particle accelerator experiments
 - The mission of cosmic rays moved to the subjects such as observations of the universe
- 1962 J.D. Linsley observed a first highest-energy (10²⁰ eV) cosmic rays
- Since 2008, Telescope Array experiment has been taking data of 10²⁰ eV. ²⁸

Theory of Cosmic-ray Shower

- Gamma ray and electron are known.
- Positrons is known in 1932.
- Bhabha, Heitler, Carlson, Oppen heimer proposed cascadeshower theory in 1937.
 - Bremsstrahlung of electrons, and then electron-positron pair creation from gamma rays occur.→Many electrons are created.
- Schein found that <u>primary</u> <u>CRs are protons</u> in 1941.
- By the collision of proton with air nucleus, π mesons are produced and decay.
 - $\pi^{\pm} \rightarrow \mu$ (discovered in 1947)
 - $\pi^0 \rightarrow \gamma$ rays

Air shower

nuclear cascade shower nucleus $p + A \rightarrow p + \pi^+ + \pi^- + \pi^0 + ...,$ $\pi^{\pm} + A \rightarrow \pi^{\pm} + \pi^+ + \pi^- + ...,$

electromagnetic shower $\pi^{0} \rightarrow 2\gamma,$ $\gamma \rightarrow e^{+} + e^{-},$ $e^{\pm} \rightarrow e^{\pm} + \gamma$ $\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}$ $\mu^{\pm} \rightarrow e^{\pm} + \nu_{\mu} + \nu_{e}$

Air shower simulation

Energy spectrum of cosmic rays

Cosmic-ray flux

Mysteries of highest-energy cosmic rays • How do cosmic rays gain highest energy? • Where do they come from? • What particles are they?

UHE accelerators in the universe (Candidates of highest-energy CR origin)

New Magnetars

Why highest energy cosmic rays?

Highest cosmic rays

Cosmic ray Origin

Low energy cosmic rays
 bend by the magnetic field
 Isotropy at the Earth
 Highest energy cosmic rays
 Almost go straight against magnetic field
 Possible to find cosmic-ray hotspot

Source cosmic rays

Cosmic rays are charged particles

Detectors of highest energy cosmic rays

Fluorescence Detector stations

FD: mirrors & cameras

Hexagonal PMT

~1° FOV/PMT

FD as an absorption calorimeter

3. Telescope calibration

of photons \rightarrow ADC channels

TA shower analysis with FD

Surface Detector (SD)

WLS fibers

- 2 layers of
 - plastic scintillator
 - 3 m² /layer
 - 1.2 cm thick/layer
- WLS fibers
 - 1 mm *\phi*
 - ~100 fibers/layer
- 1 PMT for 1 layer
 - 1-inch ϕ
- 50 MHz FADC readout

Data communication to a com. tower by wireless LAN (2.4 GHz)

Power supply for ~5 W by solar system

GPS antenna

BINP

 \sim 100% duty cycle

The full array in operation since March , 2008

Hybrid observation with FD for \sim 5 years

Scintillator

Record signal size & timing

COBINP

Example of air shower by TA SD

The Telescope Array Collaboration

R.U. Abbasi¹, M. Abe¹³, T.Abu-Zayyad¹, M. Allen¹, R. Anderson¹, R. Azuma², E. Barcikowski¹, J.W. Belz¹,
 D.R. Bergman¹, S.A. Blake¹, R. Cady¹, M.J. Chae³, B.G. Cheon⁴, J. Chiba⁵, M. Chikawa⁶, W.R. Cho⁷, T. Fujii⁸,
 M. Fukushima^{8,9}, T. Goto¹⁰, W. Hanlon¹, Y. Hayashi¹⁰, N. Hayashida¹¹, K. Hibino¹¹, K. Honda¹², D. Ikeda⁸,

H. Yamaoka²⁰, K. Yamazaki¹⁰, J. Yang³, K. Yashiro⁵, Y. Yoneda¹⁰, S. Yoshida¹⁹, H. Yoshii³⁰, R. Zollinger¹, Z. Zundel¹

1 University of Utah 2 Tokyo Institute of Technology 3 Ewha Womans University 4 Hanyang University 5 Tokyo University of Science 6 Kinki University 7 Yonsei University 8 ICRR, University of Tokyo 9 IPMU, the University of Tokyo 10 Osaka City University 11 Kanagawa University 12 University of Yamanashi 13 Saitama University 14 Astrophysical Big Bang Laboratory RIKEN, Wako 15 Rutgers University 16 Tokyo City University17 INR of the Russian Academy of Sciences 18 Waseda University 19 Chiba University 20 KEK 21 Kochi University 22 Ritsumeikan University 23 Sungkyunkwan University 24 Universite de Libre de Bruxelles 25 Ulsan National Institute of Science and Technology 2015/4/3 26 ERI, University of Tokyo 27 Hiroshima City University 28 Advanced Science Institute, RIKEN 29 National Institute of Radiological Science 30 Ehime University

Energy spectrum

TA shower analysis with SD

TA energy spectrum

• SD data : 2008/May \sim 2014/May (6 years)

What can be these two breaks?

TA energy spectrum

• SD data : 2008/May \sim 2014/May (6 years)

Distance to the Origin

↔ Highest-E cosmic rays come beyond 150 million light years (ly) rapidly loss their energy by interaction with the cosmic microwave background (relic radiation of the Big Bang). → GZK limit

Highest-E cosmic rays can not reach the Earth from the distant universe. Therefore, Origin of cosmic rays should be limited to local universe.

TA energy spectrum at highest energy region

Anisotropy

TA 5-year SD data

Arrival directions of highest-energy cosmic rays

Anisotropy of arrival directions of highest-energy cosmic rays (TA hotspot)

- Chance probability to obtain maximum significance greater than 5.5σ was $^{3}\times10^{-5}$ (4 σ)
- Large anisotropy of cosmic rays was first found above the cutoff energy

Correlation of cosmic rays above 57 EeV with Active Galactic Nuclei (AGN)

- AGN (z < 0.018)
- No. of TA events correlated with AGNs within 3.1 deg. (21) 40% Background (isotropy) (12.5) 24%

P-value 0.7% (2.7σ)

• TA events without correlation (32)

Mass Composition

Nuclear interaction

- A: mass number of incident nucleus
- Nuclear radius: r
 r ∝A^{1/3}
- Cross section: $\sigma = \sigma \propto A^{2/3}$
- Mean free path: λ - $\lambda \propto A^{-2/3}$
- Interaction depth vs. heavy nuclei
 Shallower for heavier composition

Mass composition

Shower profile depends on mass composition

Mass composition using Xmax

Consistent with light composition (predominantly proton) Statistics is not enough at around the cutoff energy

TA extension plans

- TAx4: quadruple aperture extension for highest energy cosmic rays
- TALE: TA low energy extension down to 10^{16.5}eV

TA×4 proposal

- Quadrule TA SD (~3000 km²)
 500 scintillator SDs
 2.1 km spacing (Japan)
 2 FD stations each with 10 refurbished HiRes telescopes (US)
- Apply grants this fall (Japan, US)
- 2-year construction
- 3-year observation
 - TA SD: 21 year data
 - TA hybrid: 18 year data

Subjects of anisotropy studies

1) Significance for TA 6-year data (2014) • Hotspot source has not been found

Ursa Major Cluster of galaxies Perseus Cluster of galaxies

2) Example of one-cluster hotspot (2020)

3) Example of two-cluster hotspot(2020) •

Prominent Active Galactic Nuclei near Hotspot

- Hotspot center is near supergalactic plane, but is shifted by 17 degrees
 - Expected to know the relation to magnetic field of the universe
- Analysis of correlations with gamma-ray sources and neutrinos: joint research with gamma-ray observatories and neutrino observatories
 - The joint research between TA, Auger, and IceCube started

Mass composition

- Generation, acceleration, propagation of cosmic rays
 - The length of interaction with CMB photons depends on composition
 - Little charge for lighter composition \rightarrow smaller effect on magnetic field of the universe

 \rightarrow more difficult to be accelerated

TALE (TA Low-energy Extension)^{ICRC2013} down to 10^{16.5} eV

- $E = 10^{16.5} 10^{19} eV$
 - Second knee at ~10^{17.5} eV?
 - Drastic change of composition at $10^{17} \sim 10^{18} \text{ eV}$?
- ~10¹⁷ eV cosmic ray shower: compatible with LHC center-ofmass energy

TALE layout

TALE (TA Low-energy Extension)

2015/4/3

Elevation

TALE+TA spectrum (E > 10^{15.6} eV)

Good Xmax resolution is an urgent subject \rightarrow Need hybrid analysis by constructing the full TALE SD array

Other activities

- ELS (Electron Light Source, electron accelerator)
 - On-site FD calibration by pseudo air shower generated by known energy of electrons
 - 10⁹ electrons of 40 MeV
- Associate experiments
 - Test of CR detection by radio
 - TARA (TA Radar): transmitter \rightarrow shower \rightarrow radio echo
 - Molecular Bremsstrahlung detection
 - Test of Fluorescence Detector
 - TA-EUSO: Test of prototype of JEM-EUSO at TA site
 - Mono-eye FD test
- TA SD burst events associated with lightning
- TA muon detector projects
 - Check Auger muon excess (1.8xMC)
 - Scintillator with absorber
 - Auger water tanks to the TA site
- etc.

Electron Light Source (ELS)

Electron beam source= End-to-end energy calibration

Observe pseudo air shower by electrons with known energy recorded by FD

Power=40MeV × 10⁹e-/pulse × 0.1-0.5 Hz, pulse widht: 1 μ sec

ELS event observed by the fluorescence detector

Other activities

- ELS (Electron Light Source, electron accelerator)
 - On-site FD calibration by pseudo air shower generated by known energy of electrons
 - 10⁹ electrons of 40 MeV
- Associate experiments
 - Test of CR detection by radio
 - TARA (TA Radar): transmitter \rightarrow shower \rightarrow radio echo
 - Molecular Bremsstrahlung detection
 - Test of Fluorescence Detector
 - TA-EUSO: Test of prototype of JEM-EUSO at TA site
 - Mono-eye FD test
- TA SD burst events associated with lightning
- TA muon detector projects
 - Check Auger muon excess (1.8xMC)
 - Scintillator with absorber
 - Auger water tanks to the TA site
- etc.

An example of TA reconstructed COSPA2013 events with lightning

Other activities

- ELS (Electron Light Source, electron accelerator)
 - On-site FD calibration by pseudo air shower generated by known energy of electrons
 - 10⁹ electrons of 40 MeV
- Associate experiments
 - Test of CR detection by radio
 - TARA (TA Radar): transmitter \rightarrow shower \rightarrow radio echo
 - Molecular Bremsstrahlung detection
 - Test of Fluorescence Detector
 - TA-EUSO: Test of prototype of JEM-EUSO at TA site
 - Mono-eye FD test
- TA SD burst events associated with lightning
- TA muon detector projects
 - Check Auger muon excess (1.8xMC)
 - Scintillator with absorber
 - Auger water tanks to the TA site
- etc.

JEM-EUSO

Extreme Universe Space Observatory onboard Japanese Experiment Module

- Observation of UHECRs from the universe
 - Wide FoV \rightarrow Large statistics
 - Uniform exposure

Setup of JEM-EUSO prototype @

Other activities

- ELS (Electron Light Source, electron accelerator)
 - On-site FD calibration by pseudo air shower generated by known energy of electrons
 - 10⁹ electrons of 40 MeV
- Associate experiments
 - Test of CR detection by radio
 - TARA (TA Radar): transmitter \rightarrow shower \rightarrow radio echo
 - Molecular Bremsstrahlung detection
 - Test of Fluorescence Detector
 - TA-EUSO: Test of prototype of JEM-EUSO at TA site
 - Mono-eye FD test
- TA SD burst events associated with lightning
- TA muon detector projects
 - Check Auger muon excess (1.8xMC)
 - Scintillator with absorber
 - Auger water tanks to the TA site
- etc.

Auger water tank deployed at TA CLF

• μ excess issue

H. Sagawa @BINP

Summary

- TA has been operating stably since 2008
- Results
 - Energy spectrum: cutoff at highest energy consistent with GZK cutoff
 - Anisotropy of arrival directions: hotspot with 400% anisotropy
 - Composition: consistent with light composition, predominantly proton
- Future plan
 - TAx4
 - 4 times TA to survey nearby super-galactic universe and unravel the relation with extreme phenomena in the universe
 - Frontier of astronomy by highest-energy cosmic rays
 - Low energy extension (TALE)
 - Understanding of transition from galactic cosmic rays to extragalactic cosmic rays

end